Nonstationary Synchronization of Equatorial QBO with SAO in Observations and a Model

نویسندگان

  • LE KUAI
  • XUN JIANG
  • KA-KIT TUNG
  • YUK L. YUNG
چکیده

It has often been suggested that the period of the quasi-biennial oscillation (QBO) has a tendency to synchronize with the semiannual oscillation (SAO). Apparently the synchronization is better the higher up the observation extends. Using 45 yr of the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data of the equatorial stratosphere up to the stratopause, the authors confirm that this synchronization is not just a tendency but a robust phenomenon in the upper stratosphere. A QBO period starts when a westerly SAO (w-SAO) descends from the stratopause to 7 hPa and initiates the westerly phase of the QBO (w-QBO) below. It ends when another w-SAO, a few SAO periods later, descends again to 7 hPa to initiate the next w-QBO. The fact that it is the westerly but not the easterly SAO (e-SAO) that initiates the QBO is also explained by the general easterly bias of the angular momentum in the equatorial stratosphere so that the e-SAO does not create a zero-wind line, unlike the w-SAO. The currently observed average QBO period of 28 months, which is not an integer multiple of SAO periods, is a result of intermittent jumps of the QBO period from four SAO to five SAO periods. The same behavior is also found in the Two and a Half Dimensional Interactive Isentropic Research (THINAIR) model. It is found that the nonstationary behavior in both the observation and model is caused not by the 11-yr solar-cycle forcing but by the incompatibility of the QBO’s natural period (determined by its wave forcing) and the ‘‘quantized’’ period determined by the SAO. The wave forcing parameter for the QBO period in the current climate probably lies between four SAO and five SAO periods. If the wave forcing for the QBO is tuned so that its natural period is compatible with the SAO period above (e.g., at 24 or 30 months), nonstationary behavior disappears.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-stationary Synchronization of Equatorial QBO with SAO in Observation and in Model

It has often been suggested that the period of the Quasi-Biennial Oscillation (QBO) has a tendency to synchronize with the Semi-Annual Oscillation (SAO). Using 45 years of ERA-40 data of the equatorial stratosphere up to the stratopause, we demonstrate that this synchronization is not just a tendency but indeed holds quite well in the upper stratosphere. A QBO period starts when a SAO westerly ...

متن کامل

Influence of the Quasi-Biennial Oscillation on the Extratropical Winter Stratosphere in an Atmospheric General Circulation Model and in Reanalysis Data

The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. ...

متن کامل

Driving of the SAO by gravity waves as observed from satellite

It is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper st...

متن کامل

Quasi-biennial oscillation influence on long-period planetary waves in the Antarctic upper mesosphere

[1] Long-period planetary wave data derived from meteor wind observations recorded over a 12-year period with the SuperDARN radar at Halley, Antarctica, are presented and compared with the phase of the quasi-biennial oscillation (QBO) throughout the equatorial stratosphere. Enhanced planetary wave activity in the Antarctic upper mesosphere is found during the summer months, when the QBO in the ...

متن کامل

A new pathway for communicating the 11-year solar cycle signal to the QBO

[1] The response of the equatorial quasi-biennial oscillation (QBO) to zonal-mean ozone perturbations consistent with the 11-year solar cycle is examined using a 2=2 dimensional model of the tropical stratosphere. Unique to this model are wave-ozone feedbacks, which provide a new, nonlinear pathway for communicating solar variability effects to the QBO. Model simulations show that for zonal-mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008